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ABSTRACT

It has been proposed that the properties and evolution of an aerosol can be represented by

lower order moments of its size distribution without requiring additional knowledge of the

distribution itself.  However certain distributions, including the log-normal and modified gamma

distributions widely used to represent aerosol size distributions, belong to classes of multiple

distributions having identical sets of moments, a situation that brings into question the utility of

moment-based representations of aerosol properties and dynamics.  We compare aerosol

properties and evolution for explicit dissimilar test distributions having identical moments.  It is

found that despite their dissimilarity (e.g., multimode vs. single mode) these distributions exhibit

virtually identical physical and optical properties and dynamics.  This analysis allays the concern

regarding applicability of moment-based representations of aerosol properties that arises out of

the existence of sets of distributions exhibiting identical moments.



INTRODUCTION

Size distributions of aerosols are shaped by complicated nucleation, growth, and transport

processes that are difficult to represent in models needed to describe the evolution of aerosols in

multidimensional environments (e.g., models of atmospheric transport and turbulent jet flows).

The size distribution is not only difficult to model numerically, it contains more information than

is generally required.  A possible alternative approach to explicit modeling of aerosol size

distribution evolution in simulations of aerosol dynamics is that of tracking evolution of the

aerosol in terms of the radial moments of the particle size distribution (this is the method of

moments, MOM).  The radial moments for a distribution of spherical particles are defined as:

µk (t) = rk
0

∞

∫ f (r)dr
(1)

where f (r)  gives the fraction of particles in the radius range r  to r + dr  and where k  is the

order of the moment.  The moments are tracked either as a function of time, for spatially uniform

systems (Friedlander, 1983; McGraw and Saunders, 1984; Pratsinis, 1988), or of space and time

for simulations involving complex flows (Jurcik and Brock, 1993; LaViolette et al., 1996).  In

special cases, such as free-molecular growth, the equations governing the moment evolution are

expressible in closed form in the low order moments of the distribution and yield exact analytical

or numerical solutions for the spatial and temporal distributions of the moments.  In other

instances, accurate approximate solutions can be obtained by Gaussian quadrature (McGraw,

1997).

A collateral advantage of the MOM is that many physical and optical properties of aerosols

(McGraw et al., 1997; Yue et al., 1997) and clouds (Hu and Stamnes, 1994) can be estimated

directly from knowledge of the lower-order moments of the radial size distribution [or,

equivalently, can be parameterized in terms of the effective radius which is itself defined as a

ratio of lower-order moments (see Eq. 8 below)].  Thus moment parameterizations may be well

suited for use in models describing the transport, evolution, and radiative properties of
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atmospheric aerosols with key properties represented accurately in terms of low-order integral

moments of the radial size distribution, without knowledge of the entire size distribution itself.

A possible concern with the above approach arises from the fact that certain size

distributions are not uniquely determined by their integral moments, and a fortiori by their

lower-order moments.  In particular, this situation applies to the log-normal distribution for

which, for any specified count median radius and geometric standard deviation, there exists an

infinite set of related but dissimilar distributions having identical integral (both positive and

negative) moments (White, 1990).  The same situation is shown in the following section to apply

for the modified gamma distribution and the non-negative integral moments.  Given that the log-

normal and modified gamma distributions are commonly employed as analytical representations

of size distributions of atmospheric aerosols, this situation represents a potential problem for

approaches attempting to characterize aerosols and represent their evolution in terms of the

moments of their size distributions.  Consequently, we address in this paper the extent to which

the aerosol properties of distributions based on the log-normal and modified gamma distributions

differ from those of the parent distributions.  We examine the extent to which distributions

having identical moments (which we refer to as isomomental distributions) exhibit different

physical and optical properties and evolve differently in time.  This study thus provides a

stringent test of the ability of moment-based parameterizations to represent aerosol properties

and evolution.

DISSIMILAR SIZE DISTRIBUTIONS HAVING IDENTICAL MOMENTS

Determining a positive distribution function from its  complete set of non-negative integral

moments is equivalent to solution of an integral equation of the first kind (Morse and Feshbach,

1953).  Under certain conditions a unique distribution is obtained (Stoyanov, 1987).  However,

these conditions are not satisfied for certain distributions (Heyde, 1963; Stoyanov, 1987), and

pertinent examples turn out to be distributions which have been widely employed as model

distributions in aerosol science.  This situation was noted by White (1990) who examined
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properties of the log-normal distribution.  Consider, for example, the normalized log-normal

distribution:

fLN(r) = (rs 2π )−1 exp[−(lnr − m)2 /2 s2] (2a)

where r  is the ratio of particle radius to the unit of length (typically 1 µm), m  is the logarithm of

the ratio of the count median radius (which is equal to the logarithm of the geometric mean

radius) to the unit of length, and s  is the logarithm of the geometric standard deviation (Hinds,

1982). With these definitions, fLN(r)dr  gives the fraction of particles in the size range r  to

r + dr .  The k th  radial moment of Eq. 2a (e.g., Heintzenberg, 1994) is:

µLN (k) ≡ rk
0

∞
∫ fLN (r)dr = exp[km + (ks)2 /2] . (2b)

As shown by White, there is a set of distributions (denoted here Heyde distributions) based on

the log-normal distribution,

gLN (r) = fLN (r)[1 + wF(ln r − m)] , (2c)

where F(x)  is any odd function with period s2  with −1 ≤ F(x ) ≤ 1 and −1 ≤ w ≤ 1, having the

same integral moments (positive, zero, and negative) as fLN(r) ; the conditions on w  and F

insure, among other properties, that gLN (r)  is positive definite.  Examples of these distributions

where F(x) = sin(2πx / s2)  and w =±1 are shown in the top panel of Fig. 1 for parameters such

that the average particle size and the width of the distribution are typical of atmospheric aerosols

(Whitby, 1978).

The modified gamma distribution (Pruppacher and Klett, 1980):

fMG(r) = arn exp(−br s) , (3a)
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where b  is a constant and a  normalizes the distribution, is also not determined uniquely by its

moments.  This can be most easily shown by extending the analysis of Stoyanov (1987).

Stoyanov treats the case n = 0  and 0 < s < 1/ 2, but his derivation (based on Eq. 4 below) holds

also when n  takes on other integer values; for example, the Nukiyama-Tanasawa particle size

distribution (Fuchs, 1989) has n = 2 .  The moments of Eq. 3a are:

µMG (k) ≡ rk
0

∞
∫ fMG (r)dr =

b−k / sΓ[(k + n +1)/ s]

Γ[(n +1)/ s]
. (3b)

Now consider the distribution:

gMG(r) = fMG(r)[1 + wsin(βrs)] (3c)

for −1 ≤ w ≤ 1 and β = b tan(sπ) .  Inspection of Eqs. 3a and 3c reveals that provided

rk + n
0

∞

∫ exp(−brs )sin(βrs )dr = 0 ,
(4)

gMG(r) and fMG(r)  will have identical moments.  Equation 4 has been shown to hold for all

non-negative integer values of k + n  and 0 < s < 1/ 2 (Stoyanov, 1987).  Thus these distributions

have identical non-negative integral moments for n = 0,1,2,...  and 0 < s < 1/ 2.  As shown in the

lower panel of Fig. 1, despite the fact that the fMG(r)  and gMG(r) distributions have identical

moments, they appear quite dissimilar.

PHYSICAL AND OPTICAL PROPERTIES

The existence of dissimilar distributions having identical moments requires reexamination

of the utility of parameterizations of aerosol physical and optical properties based on moments.

If significant differences in properties arise between different distributions having identical

moments, the utility of moment based parameterizations of properties is called into question.

Similar considerations apply to aerosol dynamics simulations based on the method of moments
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(Friedlander, 1983; McGraw and Saunders, 1984; Pratsinis, 1988; Jurcik and Brock, 1993),

which track the evolution of an aerosol via the evolution of the moments; to be useful it is

necessary that the aerosol properties of interest be capable of reliable estimation from the tracked

moments.  In the following we show that despite the face that the moments do not uniquely

define the distribution, moment parameterizations nonetheless give a good approximation to key

aerosol properties.

We focus on single-particle derived properties of the aerosol, which can be expressed as an

integral over the particle size distribution:

I = σ(r) f (r)dr∫ (5)

where σ(r) is a kernel function that describes the physical property under investigation.  In

special cases σ(r) is a simple power of r , or is polynomial in r , or can be expressed in

polynomial form (McGraw et al., 1995).  For these cases, property I  is proportional to a moment

or sum of moments, respectively, of the size distribution and will therefore be identical for

isomomental distributions.  Obvious examples of a power dependence include particle number,

total surface area, and volume of the aerosol, which are proportional to the zeroth, second, and

third moments, respectively.  Likewise, the total surface area and mass fluxes of material

sedimenting from a stationary fluid under Stokes flow, are proportional to the fourth and fifth

moments, respectively, and Rayleigh scattering is proportional to the sixth moment (Friedlander,

1977).

Furthermore, limiting parameterizations to polynomial combinations of moments is unduly

restrictive, and it is very likely that other moment combinations may be more effective.  An

important example is the parameterization of optical properties of aerosols and clouds in terms of

the effective radius and effective variance (Hansen and Travis, 1974; Hu and Stamnes, 1994;

Lacis and Mishchenko, 1995), defined as:
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re =
r3 f (r)dr∫
r2 f (r)dr∫

. (6a)

νe =
r − re( )2

r2 f (r)dr∫
re

2 r2 f (r)dr∫
. (6b)

Although these quantities are not of polynomial form, it is clear that any physical or optical

property that is capable of being parameterized in terms of re  and νe   must exhibit the same

value for distributions having identical second, third, and fourth moments.  Thus

parameterization in terms of lower-order moments using different (i.e. non polynomial) functions

of lower-order moments may yield substantially better results than indicated by the polynomial

criterion.  Retrieval of aerosol optical properties from moments has also been carried out through

the intermediate step of obtaining estimates of the size distribution from the moments, followed

by computation of optical properties from the estimated distributions (Yue et al., 1997).  It is

clear that all of these methods will yield identical predictions for isomomental distributions.

To be sure, there are cases where σ(r) exhibits sufficiently complex behavior that I   might

not be simply expressed in terms of the moments of the size distribution.  For example, the

kernel function σ(r) might represent a cross section for light scattering, as in Eq. 7 below, which

will then exhibit the complicated structure dictated by Mie theory (Twitty, 1975).  Nevertheless,

despite the complexity of the Mie scattering kernel, even the lower-order radial moments of the

aerosol size distribution have been shown to yield accurate parametrizations of the optical

properties of aerosols (McGraw et al., 1995; Yue et al., 1997) and clouds (Hu and Stamnes,

1994).   A stringent test of moment parameterizations is provided by predictions of the light

scattering phase function for particles in the Mie size regime.  The phase function specifies the

angular distribution of scattered light and can be written as (Bohren and Huffman, 1983):

pλ(θ) = N S11∫ (r,λ,θ ) f (r)dr (7)
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where S11(r,λ ,θ)  gives the angular distribution of scattered light from a single particle for

unpolarized incident light, the angle θ   is measured from the forward scattering direction, and N

is a normalization constant.  Figure 2 shows the phase functions for the distributions of Fig. 1

obtained using the computer codes of Hansen and Travis (1974).  The phase functions for the

several isomomental distributions are in excellent agreement even though the distributions

themselves appear quite dissimilar in form.  This agreement lends support to the supposition that

the moments of the distribution can provide a reliable basis for predicting optical properties of

particle distributions in the size range typical of atmospheric aerosols.

Extreme counterexamples include the case that σ(r) is a delta function (or narrowly peaked

function) centered on a specific radius r0 , which might be considered a functional representation

of a mobility classifier.  Inspection of Fig. 1 reveals that for such a function the integrals of Eq. 5

will not be identical for the different distributions (except of course at values of r0  for which the

distributions coincide).  Similar considerations hold for the Heaviside function, which might be

considered a model for an impactor or for the process of heterogeneous activation of an aerosol

under supersaturated conditions.

AEROSOL DYNAMICS

The evolution of an aerosol size distribution can depend on a number of processes that

include nucleation, hydrodynamic mixing, condensation/evaporation, coagulation, and

mechanisms for particle loss.  Moment methods, in which just the lower-order moments of the

size distribution are tracked in space and time, can greatly simplify the representation of these

processes in models (Friedlander, 1983; McGraw and Saunders, 1984; Pratsinis, 1988; Juric and

Brock, 1993; McGraw, 1997).  Any closed set of equations for evolution of the moments will, of

course, be invariant to substitution of one isomomental distribution for another and therefore

yield identical results.  Of the processes governing evolution of the aerosol size distribution,

those involving particle growth (e.g., condensation, evaporation, coagulation) introduce a

dependence on the full size distribution and thus often limit closure of the dynamical equations

governing moment evolution (McGraw, 1997).  Under these conditions, even initially
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isomomental distributions can be expected to evolve so as to have different sets of moments at

later time.  In this section we compare the manner in which different, initially isomomental,

distributions evolve in time.  To facilitate this comparison we consider only single-particle

growth processes (and thereby exclude coagulation), for which analytical solutions are readily

obtained (Clement, 1978).   [Treatment of moment evolution under coagulation requires the

introduction of more extensive numerical approximation schemes, some of which have recently

been described (Barrett and Jheeta, 1996; Barrett and Webb, 1997).]

For an aerosol evolving according to the growth law φ (r) = dr / dt , the evolution of the k th

moment can be represented in the general form described by Eq. 5 (Hulburt and Katz, 1964;

McGraw, 1997):

d

dt
µk = k rk −1∫ φ(r ) f(r )dr (8)

for k ≥1.  For k = 0  we have dµ 0 / dt = 0  as a consequence of the fact that although growth

processes govern particle size, they do not change particle number.  Equation 8 gives the

contribution to the moment derivative due to particle growth.  Other contributions to moment

evolution, such as mixing of air parcels of different composition, will change particle number

and introduce additional terms in Eq. 8 for the kth moment derivative.  However, for a trace

aerosol moving with the flow, these non-growth terms have a structure similar to those used to

represent the mixing of trace chemical species in the same flow, generally do not affect closure,

and can be handled by conventional fluid dynamics methods (LaViolette et al., 1996).

A commonly used expression for the rate of accretion of monomer by a particle during

condensation growth under steady state conditions is:

IT =
bMr2

r + aM
. (9)

- 8 -



This form also applies when heat transfer limits growth (Barrett and Clement, 1988).

Considering only mass transfer, bM = 4πD(n − n0 )  and aM = 4λ /3α M  (Fuchs and Sutugin,

1971; Schwartz, 1986).  In these equations, λ  is the mean free path, αM  is the mass

accommodation coefficient, D  is the diffusion coefficient, n  is the number density of

condensable molecules in the vapor at large distance from the particle, and n0  is the number

density corresponding to the vapor pressure of the particle at equilibrium.  Modified interpolation

formulae have been presented, based on comparison with numerical simulation, that replace aM

with a size-dependent factor (Fuchs and Sutugin, 1971); however such expressions differ only

slightly from Eq. 9 (Schwartz, 1986) and will not change the present results significantly, so we

assume here that aM  is independent of particle size.  Equation 9 reduces to the correct limiting

expressions for particle growth in the free-molecular ( r << λ ) and continuum (diffusional) size

limits (r >> λ ).  The growth law corresponding to Eq. 9 is

φ(r) ≡
dr

dt
=

v1bM

4π
1

r + aM
(10)

where v1 is the molecular volume of the monomer in the particle.

An analytic expression for the time evolution of a general aerosol size distribution under

the growth law of Eq. 10, which conserves particle number, can be obtained from the continuity

equation (Clement, 1978).  The method furnishes the evolved aerosol distribution f t (rt ) at time

t , for an arbitrary initial distribution f0 (r)  as follows:  Conservation of particle number implies

(Clement, 1978):

ft(rt)drt = f0(r0)dr0 . (11)

where r0  is the initial particle radius and rt  is the particle radius after time t .  Integrating the

growth law of Eq. 10 gives

rt
2 + 2aMrt = r0

2 + 2aMr0 +
v1bM

2π
t (12)
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Combining Eqs. 10-12 and expressing results in terms of the radius variable rt , we obtain:

ft(rt) =
rt + aM

(rt + aM )2 − v1bM

2π
t

f0 (rt + aM )2 −
v1bM

2π
t  − aM

 

  
 

  (13)

where the prefactor of f0  is in general dr0 / drt .  (Note that f t (rt ) is set to zero for negative

argument of the square root.)  The radial moments of f t (rt ) are obtained by substitution into Eq.

1 and carrying out the integrations numerically as described in the Appendix.

The growth law function φ (r) , appearing in the integrand of Eq. 8, is generally smoother

and more amenable to polynomial approximation than is the light scattering kernel of Eq. 7.

This suggests that isomomental distributions will tend to exhibit smaller differences in growth

rate than in their light scattering properties.  (In special cases such as free-molecular growth

(Friedlander, 1977, 1983), where φ (r)  is independent of r , the integrand of Eq. 8 will be

identical for all distributions that have the same moment sequence, and distributions that are

initially isomomental will simply shift in the direction of increasing radius with time, thereby

remaining isomomental throughout their evolution.)  To illustrate the evolution of isomomental

distributions for the growth law of Eq. 10, we choose, as the three initial distributions, the

modified gamma parent distribution (3a) and the isomomental distributions (3c) for w =±1. Size

parameters have the same values as for the distributions shown in the lower panel of Fig. 1.

Growth law parameters for the calculation were chosen such that aM = 4λ /3α M = 1µm and

tM ≡ 4πaM
2 / v1bM = 1s.  Thus for αM = 1, we set λ = 0.75 µm.  Setting the molecular volume

equal to that of water (v1 = 3 × 10 -23cm3) gives bM = 4.2 × 1015cm−1s−1 .  In the Appendix we

analyze moment evolution for a growth law having the general form of Eq. 10 and describe

specific calculations for the parameters given above (Tables 1 and 2 and Fig. 4).  As expected,

deviations from the moments calculated for the parent distributions are indeed exceedingly small

but nonzero (see Table 2 for numerical values).
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It may be noted that the growth rate from Eq. 10, which is a decreasing function of particle

radius, results in a narrowing of the particle size distribution as the distributions evolve with

time.  This is illustrated in Fig. 3, which shows the distributions at 5s, and Fig. 4, which shows

the time dependence of the mean width and effective radius of the evolved distributions.  The

mean width of the distribution is obtained as:

W =
µ 2µ0 −µ 1

2

µ 0

 
 
  

 
 

1/2

. (14)

The effective radius is from Eq. 6.  As a consequence of the near identity of the moments the

mean widths and effective radii of the several distributions are virtually indistinguishable (see the

Appendix for a more complete analysis of moment evolution).

DISCUSSION

In this paper we compared the physical and optical properties of aerosols having

distributions characterized by the same sets of moments.  Examples of differences in optical

properties and in the time evolution of such isomomental distributions were evaluated.  Because

the full positive integral moment sequence is identical for these distributions, results from the

present calculations provide a best-case limit (one in which all of the moments are available) on

the accuracy of moment-based parameterizations of aerosol optical (Fig. 2) and growth (Figs. 3

and 4) properties.  The moments of an aerosol size distribution have been shown to provide a

reliable representation of physical and optical properties even when the size distributions

themselves are not uniquely determined by their moments, as is the case for the distributions

shown in Fig. 1.  Additionally, there are prominent features of the size distribution evident in

Fig. 1 which appear to be of secondary importance to the moments in determining physical and

optical properties of the aerosol.  For example, the three log-normal and three modified gamma

distributions of Fig. 1 yield very similar phase functions (Fig. 2) even though in each case one of

- 11 -



the distributions is unimodal whereas the other two are distinctly multimodal and exhibit modes

that are markedly displaced from each other.

Simulations of aerosol dynamics via the method of moments (Friedlander, 1983; McGraw

and Saunders, 1984; Pratsinis, 1988; Jurcik and Brock, 1993; McGraw, 1997) track the moments

of the size distribution directly in space and time.  There are obvious advantages of combining

such simulations, based on moments, with parameterizations for aerosol properties that are

derived from the simulated moments.  For example, one can imagine determining the radiative

properties of atmospheric aerosols through regional-to-global scale simulations that track aerosol

moments to investigate the role of aerosols in climate forcing.  The moments of atmospheric

aerosols can also be directly compared with properties inferred from ground based or satellite

remote sensing measurements (Livingston and Russell, 1989).

Practical implementation of the method of moments would require using only a small

number of the lower-order moments.  If different distributions having identical moments were

found to evolve in such a manner that their moments differed appreciably at later times, one

would conclude that moments are not sufficient to parameterize the dynamical properties of the

aerosol, even to the extent of predicting future values of the moments themselves.  The results of

numerical calculations reported here suggest that this is not the case.  Furthermore, even the six

lowest order moments provide an accurate parameterization for growth (McGraw, 1997) and

optical properties (McGraw et al., 1995; Yue et al., 1997) of an aerosol.  Nevertheless, as a note

of caution, accuracy of moment-based parameterizations will depend both on the smoothness of

the kernel function and the broadness of the particle size distribution - the ability to construct a

low-order polynomial fit to the kernel function over the size range of the aerosol is a useful

guide.  Thus if indications are that more than six moments are required to obtain an accurate

representation, a multimodal separation of the distribution, with separate moments for each

mode, may be required.  For example, if both unactivated aerosol particles and larger cloud

droplets are present, it may be more reasonable (and more expedient) to use separate moments

for representing and/or tracking of each of these clearly distinct particle types, than to treat all

particles as part of a single distribution with a single set of moments.
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SUMMARY AND CONCLUSIONS

Distribution functions can be constructed, based on the log-normal and modified gamma

distributions, commonly used analytical representations of aerosol size distributions, that exhibit

identical sequences of positive moments (and in the case of the log-normal distribution, negative

moments also) despite substantial, qualitative differences--multimodal vs. monomodal and with

significantly displaced modes.  This situation calls into question the utility of representing

aerosol properties and evolution in terms of the moments of their size distribution.  We have

therefore examined and compared light scattering phase functions and temporal evolution of

aerosols having such isomomental size distributions.  This examination shows that despite the

considerable differences in the size distributions, the evolution and observable properties of such

aerosols are in fact quite similar.  This finding not only supports the utility of moment-based

representations of aerosol size distributions and their evolution, but also suggests that for many

applications the moment sequence may yield a more intrinsic representation of the aerosol than

the size distribution itself.
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APPENDIX:  Evolution of aerosol Radial MOMENTS ACCORDING TO THE GROWTH

LAW OF EQ. 10

Evolution of the moments of a general aerosol size distribution

In this Appendix we use Eq. 8 and the interpolation growth law of Eq. 10 for numerical

calculation of moment evolution.  Without loss of generality we express r  in units of

aM = 4λ /3α M  and time in units of tM = 4πaM
2 / v1bM  yielding for the growth law of Eq. 10:

˜ φ (˜ r ) ≡
d˜ r 

d˜ t 
=

1

1+ ˜ r 
. (A1)

where the tilde indicates reduced units ( ˜ r = r/ aM; ˜ t = t / tM ).

It is readily shown that for the growth law (A1) the time evolution of the reduced k th

moment ˜ µ k (˜ t ) for any distribution is fully determined from the time evolution of ˜ µ 1(˜ t ).  This

follows from the following identity:

˜ r k −1

1+ ˜ r 
+

˜ r k

1+ ˜ r 
= ˜ r k −1. (A2)

Combining Eqs. 8, A1, and A2 gives,

1

k

d ˜ µ k
d˜ t 

+
1

k + 1

d ˜ µ k +1
d˜ t 

= ˜ µ k −1. (A3)

Thus for any aerosol size distribution, and the growth law of Eq.A1, we obtain:
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d ˜ µ 2
d˜ t 

= 2 ˜ µ 0 − 2
d ˜ µ 1
d˜ t 

d ˜ µ 3
d˜ t 

= 3 ˜ µ 1 − 3 ˜ µ 0 +3
d ˜ µ 1
d˜ t 

d ˜ µ 4
d˜ t 

= 4 ˜ µ 2 − 4 ˜ µ 1 + 4 ˜ µ 0 − 4
d˜ µ 1
d˜ t 

                   etc.

(A4)

Evolution of the moments of the initially isomomental distributions

Consider the evolution of the radial moments for the three initially isomomental

distributions, w = 0,±1, based on the modified gamma distribution (Eq. 3c):

µk (t) ≡ rk
0

∞
∫ gMG(r)dr (A5)

where gMG(r) is evolved in time according to Eq. 13.  The initially isomomental distributions

lose that characteristic at later times.  However the differences between the moments for the three

distributions (w = 0,±1) remain so extremely small that the calculation of these differences for

the present study required high precision numerical integration (Wolfram, 1991).

An integral transformation based on the tangent function was used to handle the tail of the

distributions at large r .  Thus the integral of Eq. A5 was transformed using z = tan−1(r) to

obtain:

µk (t) = [tan(z)]k
0

π /2
∫ gMG[tan(z)]sec2(z)dz (A6)

Evolved moments of the parent distribution at a sampling of time values are given in Table 1.

The exceedingly small differences in the moments from the three evolved distributions are given

in Table 2.  Here we use the property that distributions add linearly in the moment integrals, and

evaluate the moments of the difference of distributions as

∆µk(t) ≡ rk
0

∞
∫ [gMG(r) − fMG (r)]dr (A7)
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Table 1: Moments µk of the evolved modified gamma distribution (Eq. A5 for w = 0 ).
The units are µmk.

t(s) 0 5 10 15 20

µ1 0.11484 2.355 3.611 4.591 5.423

µ2 0.03013 5.549 13.04 21.08 29.41

µ3 0.01567 13.08 47.09 96.78 159.5

µ4 0.01461 30.86 170.1 444.4 865.2

µ5 0.02266 72.86 614.4 2040.5 4692.9

Table 2: Moments of the evolved difference distributions ∆µk (Eq. A7 for w =  1).
The units are µmk.

t(s) 0 5 10 15 20

∆µ1 0 3.03E-12 -3.64E-13 8.36E-15 1.38E-14

∆µ2 0 -6.06E-12 7.28E-13 -1.67E-14 -2.76E-14

∆µ3 0 1.47E-11 9.92E-14 -3.70E-13 -1.08E-13

∆µ4 0 -3.47E-11 -3.31E-12 1.55E-12 5.43E-13

∆µ5 0 -5.92E-11 1.92E-11 4.32E-12 -7 E-14

where gMG(r) is evaluated for w =1, and fMG(r)  is the parent distribution.  Note that ∆µk

vanishes at t = 0 according to Eq. 4.  The relative differences ∆µk(t)/ µk(t) obtained from the

ratio of corresponding entries of Tables 2 to those of Table 1, range from 1 part in 1012  to 1 part

in 1017 .  The numerical accuracy of the integration is confirmed by the result that ∆µ2 = −2∆µ1 ,

as required by the first of Eqs. A4, which from linearity, apply also to the moment differences

(Note that since normalization is preserved, ∆µ0  vanishes for all times).

The fact that the values of the differences ∆µk(t)  are exceedingly small, but nonzero

(Table 1) is consistent with the polynomial criterion noted in the text.  Nonvanishing differences

imply that the growth function 1/ (1+ ˜ r )  does not have a convergent polynomial expansion.

However the smallness of the nonisomomental tendency suggest that a good polynomial

representation of the growth law can be obtained.  The following observations on representation

of the right-hand-side (rhs) of Eq. A1 by polynomials follow Lanczos (1988):  The geometric

expansion:
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1

1 + ˜ r 
= 1 − ˜ r + ˜ r 2 − ˜ r 3 + ... (A8)

has a convergence limit of unity and therefore the rhs of Eq. 1 does not have a convergent

expansion over the radius interval (0,∞ ) of the integrated aerosol distributions.  However a

superior polynomial representation is available (one with greater accuracy and extended radius of

convergence over a finite interval  0 ≤ ˜ r ≤ L ) based expansion of 1/ (1+ ˜ r )  in shifted Chebyshev

polynomials (Tn(2˜ r − 1)).  This expansion has the form (Lanczos, 1988):

1

1 + ˜ r 
= 2{(1/2) − d × T1(2˜ r − 1) + d2 × T2(2 ˜ r − 1) − d3 × T3(2˜ r − 1)+ ...} (A9)

where d = 3 − 2 2 = 0.1716... .  Comparisons for the same polynomial order (note that

Tn(2 ˜ r −1) is a polynomial of order n ) show that Eq. A9 yields a much better polynomial

representation of the growth law than is provided by the simple geometric expansion of Eq. A8.
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Figure 1. Two classes of size distributions having identical radial moments.  Upper panel:
dashed curve, log-normal distribution (Eq. 2a) for s=0.75 and m=-3; multimodal curves are the
corresponding Heyde distributions from Eq. 2c for F(x)=sin(2πx/s2).  Lower panel: dashed
curve, normalized modified gamma distribution (Eq. 3a) for n=3, b=30 and s=1/4; for these
parameters the normalization constant a = sb(n+1)/ s / Γ[(n + 1)/ s] = 8.23x1010µm-4; multimodal
curves are the corresponding Heyde distributions from Eq. 3c.
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Figure 2. Phase functions for the distributions shown in Fig. 1 at a wavelength of 550 nm.
Normalization for the phase functions has been chosen such that the integral over all scattering
directions is 4π. The real part of the particle refractive index was set at 1.4, independent of
particle size, and the imaginary part set to zero (no absorption).  The percent deviation of the
phase functions for the Heyde distributions from those for the corresponding parent distributions
is also shown.

- 22 -



Figure 3. Distribution profiles at t=5s (from Eq. B4).  Dashed curve, evolved normalized
modified gamma distribution (Eq. 3a and Fig. 1 give the distribution at t=0) for n=3, b=30 and
s=0.25; multimodal curves are the corresponding evolved Heyde distributions (Eq. 3c and Fig. 1
give the distributions at t=0).
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Figure 4. Time dependence of the widths of the evolved MG and derived Heyde distributions.
The distribution widths were computed from the moments using Eq. 15.  The figure also shows
evolution of the effective radius according to Eq. 8 (right axis).
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